Contribution of Prof. H. Akaike to Statistical Modeling of Complex Systems

Research Organization of Information and Systems Genshiro Kitagawa

Hirotugu Akaike (1927–2009)

Brief History

- 1952 Graduated from Math. Dept., Tokyo University Researcher of the **Institute of Statistical Mathematics**
- 1962 Head of 2nd Section, 1st Division
- 1973 Director of **5th Division**
- 1985 Director of **Dept. of Prediction and Control**
- 1986 **Director-General of ISM** (-1994)
- 1988 Member of Science Council of Japan (- 1991) Head of Dept. of Statistical Science, Graduate University of Advanced Study
- 1994 Prof. Emeritus, The Inst. Statist. Math. Prof. Emeritus, Graduate Univ. for Advance Study

Prizes

1972 Ishikawa Prize

(Establishment of statistical analysis and control method for dynamic systems)

1980 Okochi Prize

(Research and realization of optimal steam temperature control of thermal electric plant)

1989 Asahi Prize

(Research on statistics, in particular theory and applications of AIC)

The Purple Ribbon Medal

(Statistics, in particular time series analysis and its applications)

1996 The 1st Japan Statistical Society Prize (Contributions to statistical theory and its applications)

2000 The Order of the Sacred Treasure

2006 Kyoto Prize

(Major contribution to statistical science and modeling with the development of AIC)

Fellow of ASA, RSS, IMS, IEEE, JSS

Laureate of 22nd Kyoto Prize

"Major contribution to statistical science and modeling with the development of the Akaike Information Criterion (AIC)"

- 1. Launching period: Mathematical analysis and structural modeling (1950's)
- 2. Frequency domain analysis (1960's)
- 3. Time domain time series modeling (1970's)
- 4. AIC and statistical modeling (1970's)
- 5. Bayes modeling (1980's)

1. Launching Period (1952-1960)

Mathematical Analysis

- Decision process
- Evaluation of probability distribution
- Monte Carlo method solving linear equation
- Computation of eigenvalues
- Convergence of optimum gradient method

Convergence Analysis of Optimal Gradient Method **AISM**(1959) Analyzed limiting behavior of the optimal gradient method and showed the poor convergence property, known as **bird cage**.

Became the **foundation of nonlinear optimization methods** such as Conjugate Gradient method and Quasi Newton method • ... Kowarik and Osbone (1968)

Bird cage

Structural Modeling

At this time, he was rather interested in real-world problems. And from very early stage in the1950', he realized the conventional linear stationary models are unrealistic and the importance of developing a model that fully takes into account of the structure of the process.

Control of filature production process (Joint work with Dr. Shimazaki of the Sericultural Experiment Station)

- Developed a control method based on gap process modeling
- This method provided a reference process to detect abnormalities in actual reeling process.
- Brought significant innovation for silk production in Japan

2. Frequency Domain Analysis: (1960-70)

• By 1960, he established contacts with engineers

It took almost 10 years for me to develop substantial contacts, and this happened largely by coincidence. Statistical Science (1995)

- He realized that linear stationary modeling is utilized and many unsolved important problems are left for statisticians
- Smoothing method for power spectrum estimation (Suspension system of a car, Dr. Kaneshige, Isuzu Motor Co.) Akaike windows

•Estimation of frequency response function

(Dr. Yamanouchi, Transportation Tech. Res. Inst.) Developed a method of estimating frequency response function from observations under normal steering (without using sinusoidal inputs)

2. Frequency Domain Analysis: (1960-70)

Developed practical method of analyzing complex systems

Organized workshop on practical use of time series method

- Ship's yawing, rolling (Yamanouchi, Kawashima)
- Rolling of a car (Kawamura)
- Engine of a car (Kaneshige)
- Response of an air-plane to side wind (Takeda)
- Hydroelectric power plant (Nakamura)
- Estimation of underground structure through micro tremor
- Tsunami (Kinosita)
- EEG analysis (Suhara)

Difficulty in Feedback Systems

Cement Rotary Kiln, Chichibu Cement Company

- rotary kiln is a complicated **feedback system**, consisting of many variables such as raw material feed, fuel feed, gas damper angle, temperature at various locations, etc.
- Conventional spectral analysis methods were useless to identify the source of fluctuation
- In the frequency domain analysis, we cannot explicitly utilize the physical realizability of the system

Limitation of frequency domain approach

Madison symposium (1967)

Return to time domain modeling

3. Time Domain Time Series Modeling (1968-)

Vector time series $y_n = (y_{n1}, \dots, y_{n\ell})^T$

Spectrum & Power Contribution

VAR model $y_n = \sum_{k=1}^{m} A_k y_{n-k} + w_n \quad w_n \sim N(0, \Sigma)$ Cross spectrum $p(f) = B(f) \Sigma B(f)^*$ $B(f) = (b_{ij}) = \sum_{\ell=1}^{m} A_\ell \exp(-2\pi i \ell f)$ Power spectrum of y_{ni} $p_{ii}(f) = \sum_{j=1}^{\ell} |b_{ij}(f)|^2 \sigma_j^2$ Power contribution $r_{ij}(f) = \frac{|b_{ij}(f)|^2 \sigma_j^2}{p_{ii}(f)}$

Order *m* is unknown! Proper selection of the order is crucial Proportion of the contribution from noise input $e_j(n)$ in the power spectrum of $y_i(n)$ at frequency *f*.

Predictive Point of View and FPE

Realization of Statistical Control

Analysis and Control of Feedback Systems

Main Contributions in Time Domain Modeling

- 1. Developed practical method of VAR modeling
 - Analysis of feedback systems
 - Statistical controller

2. Use of state-space model

- For optimal controller design
- ML Estimation and identification of VARMA model
- BAYSEA: Bayesian method for seasonal adjustment
- 3. Oder determination
 - FPE, MFPE, FPEC
 - AIC
- 4. Developed TIMSAC (Time Series Analysis and Control program package)

4. AIC and Statistical Modeling (1971-)

Predictive Point of View and AIC

Model g(y): distribution of future data, f(y): model **Kullback-Leibler Information**

$$I(g; f) = E_{Y} \log \left(\frac{g}{f}\right) = E_{Y} \log g - E_{Y} \log f$$

Expected Log-Likelihood Unknown constant

$$E_{Y} \log f(Y) = \int \log f(y) g(y) dy$$

Log-Likelihood $x_{1}, \dots, x_{n} \sim g(x)$

$$\frac{1}{n} \sum_{i=1}^{n} \log f(X_{i}) \longrightarrow E_{Y} \log f(Y)$$

MLE

$$\ell(\theta) \equiv \log f(X \mid \theta) \qquad \max \ell(\theta) \qquad \widehat{\theta} = \widehat{\theta}(X)$$

Multi-model Situation: Bias correction $\bigtriangleup AIC$

19

Bias Correction

$$b(G) = E_X \left\{ \log f(X \mid \hat{\theta}(X)) - nE_Y \log f(Y \mid \hat{\theta}(X)) \right\} = E_X[D]$$

Number of papers citing Akaike's paper by Thomson (ISI)

5142	IEEEac(1974)
2907	Akad. Kiado (1973)
1115	Psychometrika (1987)
818	AISM(1969)
431	AISM(1970)
359	Math. Science (1978)
281	Appl. Stat. (1977)
265	Bayesian Stat. (1980)
204	System Ident. (1980)
135	Celebration (1986)
127	AISM(1969)
123	AISM(1974)
13104	total

By Google Scholar

14265	IEEE-ac (1974)
8588	Acad. Kiado (1973)
1987	Psychometrika(1987)
1969	AISM (1969)

Main Contributions in This Stage

- 1. Developed of AIC
- 2. Importance of statistical modeling
- 3. Motivated nonstationary, non-Gaussian nonlinear modeling
- 4. Developed TIMSAC-78

5. From AIC to Bayes Modeling

Models: M_1, \ldots, M_ℓ AIC₁,..., AIC_{ℓ} Likelihood of the model: $\exp(-AIC_j/2)$ Prior probability of order: π_j Posterior probability of order: $\pi_i \exp(-AIC_i/2)$

$$p(M_j | Y) = \frac{\pi_j \exp(-\operatorname{AIC}_j / 2)}{\sum_{j=1}^{\ell} \pi_j \exp(-\operatorname{AIC}_j / 2)}$$

Bayes estimate of the model $p(x | Y) = \sum_{j=1}^{\ell} p_j(x | \hat{\theta}_j) p(M_j | Y)$

Model averaging mitigated the instability inherent in model selection

Akaike (1977a, 1978abc, 1979)

Seasonal Adjustment Problem

$$y_n = T_n + S_n + \varepsilon_n, \quad n = 1, \dots, N$$

 y_n Observation S_n Seasonal component T_n Trend ε_n Irregular component

Determination of Trade-off Parameter via Bayesian Interpretation

$$(d^{2}, r^{2}, z^{2}) \qquad \begin{array}{c} \text{Crucial} \\ \text{parameters} \end{array} \\ \sum_{n=1}^{N} \left[\left(y_{n} - T_{n} - S_{n} \right)^{2} + \sum_{n=1}^{N} \left[d^{2} \left(\nabla^{2} T_{n} \right)^{2} + r^{2} \left(S_{n} - S_{n-12} \right)^{2} + z^{2} \left(S_{n} + \dots + S_{n-11} \right)^{2} \right] \end{array}$$

Multiply by $-1/(2\sigma^2)$ and exponentiate

$$\exp\left\{-\frac{1}{2\sigma^{2}}\sum_{n=1}^{N}\left(y_{n}-T_{n}-S_{n}\right)^{2}\right\}\exp\left\{-\frac{d^{2}}{2\sigma^{2}}\sum_{n=1}^{N}\left(\nabla^{2}T_{n}\right)^{2}+\cdots\right\}$$

Bayesian Interpretation $\theta = (d^2, r^2, z^2, \sigma^2)$ $\pi(T, S \mid y, \theta) \propto p(y \mid T, S, \theta) \pi(T, S \mid \theta)$ Smoothness Prior

ABIC =
$$-2(\max \log L) + 2(\dim \text{ of } \theta)$$

Determination of θ by ABIC (Akaike 1980)

Various Practice of Bayes Modeling

Seasonal Adjustment

- BAYSEA
- DECOMP

Earth-Tide Analysis

• BAYTAP-G

Cohort Analysis

State-Space Modeling

- Time-varying AR model
- Extraction of effect of earthquake from groundwater level data
- Nonlinear smoothing
- Data assimilation

Software

TIMSAC84

Time series analysis programs based on Bayesian modeling

Impacts of AIC and ABIC

Shift of Statistical Paradigm

Data in Information & Knowledge Society

Information Society Information Technology

Information Technologies

- Measurement devices
- Internet communication
- Database

Accumulation of Data

- Life Science: DNA data, Micro-array data
- Marketing: POS data
- Finance: High frequency data
- Environmental Science:
- Seismology, Meteorology
- Astronomy (Whole-sky CCD camera)
- High energy physics

Data-centric Science (Fourth Science)

	Human Inspiration dependent	Cyber-enabled	
Deductive (Principle driven)	Theoretical science	Computing Science (Simulation)	
Inductive (Data driven)	Experimental Science	Data-centric Science (Fourth science)	

Main Contributions of Prof. Akaike

- 1. Time domain multivariate modeling Identification method and various practices
- 2. Information criteria

Change of statistical paradigm: modeling

Concluding Remarks: Akaike's Research Style

- Challenge real problems for problem finding
- Joint works with researchers in various domains
- Occasionally change his policy if necessary
- Develop and open software

Epilogue: Analysis of Golf Swing (1994 - 2009)

Golf swing

Golf swing motion analysis: An experiment on the use of verbal analysis in statistical reasoning, **AISM**, Vol.53, No.1 1-10 (2001).

Making statistical thinking more productive, to appear in AISM, Vol.62, No.1 (2010).

的誉教授